0

Full Content is available to subscribers

Subscribe/Learn More  >

Influence of Channel Orientation on Heat Transfer in a Two-Pass Smooth and Ribbed Rectangular Channel (AR=2:1) Under Large Rotation Numbers

[+] Author Affiliations
Michael Huh

The University of Texas at Tyler, Tyler, TX

Jiang Lei, Je-Chin Han

Texas A&M University, College Station, TX

Paper No. GT2010-22190, pp. 53-65; 13 pages
doi:10.1115/GT2010-22190
From:
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 4: Heat Transfer, Parts A and B
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4399-4 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME

abstract

Experiments were conducted in a rotating two-pass cooling channel with an aspect ratio of 2:1 (Dh = 16.9 mm). Results for two surface conditions are presented: smooth and one ribbed configuration. For the ribbed channel, the leading and trailing walls are roughened with ribs (P/e = 10, e/Dh = 0.094) and are placed at an angle (α = 45°) to the mainstream flow. For each surface condition, two angles of rotation (β = 90°, 135°) were studied. For each angle of rotation, five Reynolds numbers (Re = 10K–40K) were considered. At each Reynolds number, five rotational speeds (Ω = 0–400 rpm) were considered. The maximum rotation number and buoyancy parameter reached were 0.45 and 0.85, respectively. Results showed that rotation effects are minimal in ribbed channels, at both angles of rotation, due to the strong interaction of rib and Coriolis induced vortices. In the smooth case, the channel orientation proved to be important and a beneficial heat transfer increase on the leading surface in the first pass (radially outward flow) was observed at high rotation numbers. The correlations developed in this study for predicting heat transfer enhancement due to rotation using the buoyancy parameter showed markedly good agreement with experimental data (+/-10%). Finally, heat transfer under rotating conditions on the tip cap showed to be quite dependent on channel orientation. The maximum tip cap Nu/Nus ratio observed was 2.8.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In