Full Content is available to subscribers

Subscribe/Learn More  >

Influence of Exhaust Gas Recirculation on Combustion Instabilities in CH4 and H2/CH4 Fuel Mixtures

[+] Author Affiliations
Don Ferguson, Joseph A. Ranalli, Peter Strakey

National Energy Technology Laboratory - US DOE, Morgantown, WV

Paper No. GT2010-23642, pp. 1259-1267; 9 pages
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 2: Combustion, Fuels and Emissions, Parts A and B
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4397-0 | eISBN: 978-0-7918-3872-3


This paper evaluates the impact of two strategies for reducing CO2 emissions on combustion instabilities in lean-premixed combustion. Exhaust gas recirculation can be utilized to increase the concentration of CO2 in the exhaust stream improving the efficiency in the post-combustion separation plant. This coupled with the use of coal derived syngas or hydrogen augmented natural gas can further decrease CO2 levels released into the environment. However, changes in fuel composition have been shown to alter the dynamic response in lean-premixed combustion systems. In this study, a fully premixed, swirl stabilized, atmospheric burner is operated on various blends of H2/CH4 fuels with N2 and CO2 dilution to simulate EGR. Acoustic pressure and velocity, and global heat release measurements were performed at fixed adiabatic flame temperatures to evaluate the impact of fuel composition and dilution on various mechanisms that drive the instabilities.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In