0

Full Content is available to subscribers

Subscribe/Learn More  >

Investigations of Gaseous Alternative Fuels at Atmospheric and Elevated Temperature and Pressure Conditions

[+] Author Affiliations
Audrius Bagdanavicius, Nasser Shelil, Philip J. Bowen, Nick Syred, Andrew P. Crayford

Cardiff University, Cardiff, Wales, UK

Paper No. GT2010-23270, pp. 993-1004; 12 pages
doi:10.1115/GT2010-23270
From:
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 2: Combustion, Fuels and Emissions, Parts A and B
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4397-0 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME

abstract

Increasing interest in alternative fuels for gas turbines stimulates research in gaseous fuels other than natural gas. Various gas mixtures, based on methane as the main component, are considered as possible fuels in the future. In particular, methane enrichment with hydrogen or dilution with carbon dioxide is of considerable interest. Some experiments and numerical calculations have been undertaken to investigate methane-hydrogen and methane-carbon dioxide gas flames, however most of these investigations are limited by particular pressure or temperature conditions. This paper presents the investigation of the combustion of methane–carbon dioxide mixtures at atmospheric and elevated temperature and pressure conditions. Two experimental rigs were used, a Bunsen burner and swirl burner. Bunsen burner experiments were performed in the High Pressure Optical Chamber, which is located within the Gas Turbine Research Centre of Cardiff University — at 3 bara and 7 bara pressure, and 473 K, 573 K and 673 K temperature conditions for lean and rich mixtures. Planar Laser Tomography (PLT) was applied to investigate turbulent burning velocity. Burning velocity of the gas mixture was calculated using two different image processing techniques and the difference in the results obtained using these two techniques is presented and discussed. Laser Doppler anemometry (LDA) was utilised to define turbulence characteristics such as turbulence intensity and integral length scale. Due to the variability of the velocity flow field and turbulence intensity across Bunsen burners, the importance of measuring position and conditions is discussed. The sensitivity of this variance on the flame regime as defined in the Borghi diagram is evaluated. In the second part of the study, a generic swirl burner was used to define the flame flashback limits for methane–carbon dioxide mixtures at atmospheric conditions. The gas mixture stability graphs are plotted, and the effect of CO2 addition are discussed.

Copyright © 2010 by ASME
Topics: Pressure , Temperature , Fuels

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In