Full Content is available to subscribers

Subscribe/Learn More  >

A Quantitative Link Between Cold-Flow Scalar Unmixedness and NOx Emissions in a Conical Premixed Burner

[+] Author Affiliations
Arnaud Lacarelle, Sebastian Göke, Christian O. Paschereit

Technische Universität Berlin, Berlin, Germany

Paper No. GT2010-23132, pp. 919-931; 13 pages
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 2: Combustion, Fuels and Emissions, Parts A and B
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4397-0 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME


The feasibility of using cold flow measurements in a conical swirl-inducing burner to predict the fuel/air mixture probability density function (PDF) at the flame location in a staged premixed swirl-inducing burner is discussed in the present work. Particle Image Velocity (PIV) measurements are used to investigate the impact of the flame on the mean and coherent velocity field upstream of the premixed flame of a conical swirl-inducing burner. When the flame does not anchor inside the burner, a good agreement between the reacting and the cold-flow fields is ensured. The scalar mixing field, dominated by coherent concentration fluctuations, is thus marginally affected by the flame. In this case, a correction of the mixture PDF, recorded in a water test rig at the burner outlet with planar laser-induced fluorescence (PLIF), can be used to estimate the mixture PDF at the flame location. This correction is based on the exponential decay of the mixture variance associated with the flame-position information of the reacting flow. An experimental curve fitting and a chemical-reactor network model confirm that the resulting PDF approximates the real unmixedness at the flame better than the measured mixture PDF at the burner outlet. When the flame is anchored inside the burner, the correction approach does not apply anymore, due to the strong flow field changes. The methodology presented allows to quantitatively predict the mixture PDF at the flame location for different total powers, preheating temperatures, and equivalence ratios. The simple mixing model and reactor network model are able to satisfyingly capture the NOx emissions when the flame stabilizes completely downstream of the burner.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In