Full Content is available to subscribers

Subscribe/Learn More  >

Influence of Flame and Burner Transfer Matrix on Thermoacoustic Combustion Instability Modes and Frequencies

[+] Author Affiliations
Giovanni Campa, Sergio Mario Camporeale

Polytechnic University of Bari, Bari, Italy

Paper No. GT2010-23104, pp. 907-918; 12 pages
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 2: Combustion, Fuels and Emissions, Parts A and B
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4397-0 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME


The main origin of combustion instability in modern gas turbines is considered to be related to the interaction between acoustic waves and flame perturbations. An important role is played by the characteristics of combustion chamber and burners, because they influence the operating conditions at which the instability may occur. Experimental tests carried out on single burner arrangements fail to give adequate indications for the design of a full scale combustion chamber, due to the interaction of the local flame fluctuations with the propagation of the pressure waves, that have a wavelength of the same order of magnitude of the main dimensions of the chamber. Therefore there is a large interest on developing techniques able to make use of the data gathered from tests carried out on a single burner for predicting the thermoacoustic behavior of the combustion chamber at full scale with its actual geometry. A three dimensional finite element code has been developed for predicting acoustically driven combustion instabilities in combustion systems with complex geometries. The code allows one to identify the frequencies at which thermoacoustic instabilities are expected and the growth rate of the pressure oscillations, at the onset of instability, under the hypothesis of linear behaviour of the acoustic waves. The code permits to represent heat release fluctuations through an n–τ Flame Transfer Function (FTF) model and to adopt the transfer matrix method for modelling the burners. The FTF and the burner transfer matrix (BTM), as well as the temperature field and the flame location, needed for the simulation, can be obtained from experimental tests. Moreover, the code is able to make use of the local distribution of n and τ that can be evaluated from computational fluid dynamic studies on the single burner. The paper shows the importance of the flame characteristics, such as dimensions and shape of the heat release zone and its location within the combustor, underlying their influence on the instability of the modes and so the potential of the proposed method as a design tool for defining the burner characteristics and the acoustic impedance at the boundaries of the combustion chamber.

Copyright © 2010 by ASME
Topics: Combustion , Flames



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In