0

Full Content is available to subscribers

Subscribe/Learn More  >

Ignition and Combustion of Heavy Hydrocarbons Using an Aerosol Shock-Tube Approach

[+] Author Affiliations
Brandon Rotavera, Nolan Polley, Eric L. Petersen

Texas A&M University, College Station, TX

Kara Scheu, Mark Crofton

The Aerospace Corporation, El Segundo, CA

Gilles Bourque

Rolls-Royce Canada, Montreal, QC, Canada

Paper No. GT2010-22844, pp. 699-707; 9 pages
doi:10.1115/GT2010-22844
From:
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 2: Combustion, Fuels and Emissions, Parts A and B
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4397-0 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by Rolls-Royce Canada Ltd.

abstract

Results from a heterogeneous shock-tube approach recently demonstrated at Texas A&M University, wherein a hydrocarbon fuel is introduced in liquid phase with gaseous oxidizer, are presented. The shock tube has been designed for controlled measurement of ignition delay times, sooting phenomena, radical species concentrations, time-dependent species profiles, and nanoparticle-aided combustion using heavy hydrocarbons which are difficult to study using the traditional shock tube approach. Aerosol is generated in a high-vacuum manifold positioned 4-m from the endwall where optical and pressure-based diagnostics are stationed. The approach reduces the propensity for fuel-film deposition near the endwall avoiding optical and/or kinetic disturbances that could result. The aerosol enters the shock tube initially as a two-phase flow of liquid fuel and gaseous oxidizer/inert gas. Liquid droplets partially evaporate while resident in the shock tube, prior to shock wave generation, and are then completely vaporized behind the incident shock wave. Behind the reflected shock wave, then, resides a pure gas-phase fuel and oxidizer mixture. The primary benefit of the aerosol shock tube approach is the ability to inject fuels of low vapor pressure at high or low concentrations. The classic shock-tube approach introduces gas-phase constituents only, and has difficulty accommodating low vapor-pressure liquids, except when component partial pressures are much lower than what is usually required. In the present work, n-heptane aerosol (C7 H16 , Pvap, 20 °C ∼ 35 torr), was generated with O2 /Ar carrier gas and dispersed in the shock tube in a uniform manner. Stoichiometric ignition delay times with temperature varied from 1240 K to 1600 K and pressure maintained near 2.0 atm are compared to gas-phase data at similar conditions and a chemical kinetic model for heptane combustion. Excellent agreement was found between the two-phase aerosol approach and the classical method involving vapor-phase n-heptane and pre-mixed gases. The measured activation energy for the stoichiometric mixture at 2.0 atm (EA = 42.3 kcal /mol), obtained with the two-phase technique, compares well with the literature value.

Copyright © 2010 by Rolls-Royce Canada Ltd.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In