Full Content is available to subscribers

Subscribe/Learn More  >

Measurement and Simulation of Turbulent Mixing in a Jet in Crossflow

[+] Author Affiliations
Flavio Cesar Cunha Galeazzo, Georg Donnert, Peter Habisreuther, Nikolaos Zarzalis

Karlsruhe Institute of Technology, Karlsruhe, Germany

Richard J. Valdes

Siemens Energy, Inc., Karlsruhe, Germany

Werner Krebs

Siemens AG, Karlsruhe, Germany

Paper No. GT2010-22709, pp. 571-582; 12 pages
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 2: Combustion, Fuels and Emissions, Parts A and B
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4397-0 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME


Computational Fluid Dynamics (CFD) has an important role in current research. While Large Eddy Simulations (LES) are now common practice in academia, Reynolds-averaged Navier-Stokes (RANS) simulations are still very common in industry. Using RANS allows faster simulations, however the choice of the turbulence model has a bigger impact on the results. An important influence of the turbulence modeling is the description of turbulent mixing. Experience has shown that often inaccurate simulations of combustion processes originate from an inadequate description of the mixing field. A simple turbulent flow and mixing configuration of major theoretical and practical importance is the jet in crossflow (JIC). Due to its good fuel-air mixing capability over a small distance JIC is favored by gas turbine manufacturers. As the design of the mixing process is the key to creating stable low NOx combustion systems, reliable predictive tools and detailed understanding of this basic system are still demanded. Therefore the current study has re-investigated the JIC configuration under engine relevant conditions both experimentally and numerically using the most sophisticated tools available today. The combination of planar Particle Image Velocimetry (PIV) and Laser Induced Fluorescence (LIF) was used to measure the turbulent velocity and concentration fields as well as to determine the correlations of the Reynolds stress tensor uiuj ′ and the Reynolds flux vector uic′ . Boundary conditions were determined using Laser Doppler Velocimetry. The comparisons between the measurements and simulation using RANS and LES showed that the mean velocity field was well described using the SST turbulence model. However, the Reynolds stresses and more so the Reynolds fluxes deviate substantially from the measured data. The systematic variation of the turbulent Schmidt number reveals the limited influence of this parameter indicating that the basic modeling is amiss. The results of the LES simulation using the standard Smagorinsky model were found to provide much better agreement with experiments also in the description of turbulent mixing.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In