Full Content is available to subscribers

Subscribe/Learn More  >

On Swirl Stabilized Flame Characteristics Near the Weak Extinction Limit

[+] Author Affiliations
Svetoslav Marinov, Matthias Kern, Klaus Merkle, Nikolaos Zarzalis

University of Karlsruhe, Karlsruhe, Germany

Antonio Peschiulli, Fabio Turrini

Avio S.p.A., Rivalta di Torino, TO, Italy

O. N. Sara

Atatürk Üniversitesi, Erzurum, Turkey

Paper No. GT2010-22335, pp. 259-268; 10 pages
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 2: Combustion, Fuels and Emissions, Parts A and B
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4397-0 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME


One of the most promising methods for reducing NOx emissions of jet engines is the lean combustion process. In order to realize this concept the percentage of air flowing through the combustor dome has to be drastically increased. This requirement leads to nozzles with high effective area and to high mean velocities in the primary zone of the combustor chamber. The investigation of the lean blow out limit for those nozzles is of main interest for the design of lean combustor technology. It is reported on investigation of a kerosene-fueled, swirl stabilized flame at atmospheric conditions. Two lean operation conditions are investigated, one in stable regime and the other very close to the weak extinction limit. It has been determined, that the flame shape changes when shifted from the stable regime to the other one close to the weak extinction limit (also referred to further as LBO — lean blowout). Since all field measurement schemes are similar, the gained data can be associated and conclusions regarding the flame stabilization at lean conditions can be drawn. The velocity data yields information about the topology of both isothermal and reacting flow fields in the combustion chamber. The internal recirculation and the corner recirculation zones can be well distinguished, because it can be measured directly in the nozzle exit plane. The comparison of the experimental data at stable and near LBO conditions shows the importance of inner and outer recirculation zones for the stabilization process. Furthermore, a comparison with a gaseous fuel nozzle will exhibit the differences between liquid and gaseous fuel combustion.

Copyright © 2010 by ASME
Topics: Flames



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In