Full Content is available to subscribers

Subscribe/Learn More  >

Methane Oxy-Combustion for Low CO2 Cycles: Blowoff Measurements and Modeling

[+] Author Affiliations
Alberto Amato, Robert Hudak, David R. Noble, David Scarborough, Peter A. D’Carlo, Jerry M. Seitzman, Tim C. Lieuwen

Georgia Institute of Technology, Atlanta, GA

Paper No. GT2010-22302, pp. 235-245; 11 pages
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 2: Combustion, Fuels and Emissions, Parts A and B
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4397-0 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME


Increasing concerns about climate change have encouraged interest in zero-CO2 emission hydrocarbon combustion techniques. In one approach, nitrogen is removed from the combustion air and replaced with another diluent such as carbon dioxide or steam. In this way, formation of nitrogen oxides is prevented and the exhaust stream can be separated into concentrated CO2 and water by a simple condensation process. The concentrated CO2 stream can then be sequestered or used for enhanced oil recovery. Burning fuels in an O2 /CO2 diluent raises new combustion opportunities and challenges for both emissions and operability: this study focuses on the latter aspect. CH4 /O2 /CO2 flames are known to be characterized by slower chemical kinetics than methane-air flames and as such, flame stability is more problematic as they are easier to blow off. This issue was investigated experimentally by characterizing the stability boundaries of a swirl stabilized combustor. Near stoichiometric CO2 and N2 diluted methane/oxygen flames were considered and compared with baseline methane/air flames. Numerical modeling of chemical kinetics was also performed to analyze the dependence of laminar flame speeds and extinction strain rates upon dilution by different species and to develop correlations for blowoff boundaries. Finally, blowoff trends at high pressure were extrapolated from atmospheric pressure data to simulate conditions closer to those of gas turbines.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In