Full Content is available to subscribers

Subscribe/Learn More  >

Applicability of a Multiple-Injection Burner to Dry Low-NOx Combustion of Hydrogen-Rich Fuels

[+] Author Affiliations
Tomohiro Asai, Hiromi Koizumi, Satoschi Dodo, Hirokazu Takahashi, Shouhei Yoshida, Hiroshi Inoue

Hitachi, Ltd., Hitachinaka, Ibaraki, Japan

Paper No. GT2010-22286, pp. 183-192; 10 pages
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 2: Combustion, Fuels and Emissions, Parts A and B
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4397-0 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME


To demonstrate the applicability of a “multiple-injection burner” to dry low-NOx combustion of hydrogen-rich fuels, the combustion characteristics of a burner were experimentally investigated. The experimental results show that a burner with a flame lift-off length of 5 mm and a fuel-injection-hole diameter of 1.5 mm achieves low NOx concentration of less than 6 ppm for hydrogen-rich fuels with a wide range of hydrogen concentrations. This finding demonstrates that the burner achieves dry low-NOx combustion of these hydrogen-rich fuels without need for any modification of the burner’s configuration. Moreover, it was found that fuel distribution, fuel composition, flame lift-off length, and fuel-jet velocity have significant effects on the burners’ combustion characteristics.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In