Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Investigation of Laminar Flame Speeds for Medium Calorific Gas With Various Amounts of Hydrogen and Carbon Monoxide Content at Gas Turbine Temperatures

[+] Author Affiliations
Ivan R. Sigfrid, Ronald Whiddon, Robert Collin, Jens Klingmann

Lund University, Lund, Sweden

Paper No. GT2010-22275, pp. 173-181; 9 pages
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 2: Combustion, Fuels and Emissions, Parts A and B
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4397-0 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME


It is expected that, in the future, gas turbines will be operated on gaseous fuels currently unutilized. The ability to predict the range of feasible fuels, and the extent to which existing turbines must be modified to accommodate these fuels, rests on the nature of these fuels in the combustion environment. Understanding the combustion behavior is aided by investigation of syngases of similar composition. As part of an ongoing project at the Lund University Departments of Thermal Power Engineering and Combustion Physics, to investigate syngases in gas turbine combustion, the laminar flame speed of five syngases (see table) have been measured. The syngases examined are of two groups. The first gas group (A), contains blends of H2 , CO and CH4 , with high hydrogen content. The group A gases exhibit a maximum flame speed at an equivalence ratio of approximately 1.4, and a flame speed roughly four times that of methane. The second gas group (B) contains mixtures of CH4 and H2 diluted with CO2 . Group B gases exhibit maximum flame speed at an equivalence ratio of 1, and flame speeds about 3/4 that of methane. A long tube Bunsen-type burner was used and the conical flame was visualized by Schlieren imaging. The flame speeds were measured for a range of equivalence ratios using a constrained cone half-angle method. The equivalence ratio for measurements ranged from stable lean combustion to rich combustion for room temperature (25°C) and an elevated temperature representative of a gas turbine at full load (270°C). The experimental procedure was verified by methane laminar flame speed measurement; and, experimental results were compared against numerical simulations based on GRI 3.0, Hoyerman and San Diego chemical kinetic mechanisms using the DARS v2.02 combustion modeler. On examination, all measured laminar flame speeds at room temperature were higher than values predicted by the aforementioned chemical kinetic mechanisms, with the exception of group A gases, which were lower than predicted.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In