Full Content is available to subscribers

Subscribe/Learn More  >

A Study on the Flowfield of an Innovative Z-Flowpath Gas Turbine Combustor

[+] Author Affiliations
Zongming Yu, Yong Huang, Fang Wang

Beijing University of Aeronautics and Astronautics, Beijing, China

Paper No. GT2010-22242, pp. 113-118; 6 pages
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 2: Combustion, Fuels and Emissions, Parts A and B
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4397-0 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME


Reverse flow combustors were widely used in small and micro gas turbine engines. The wall area of this type of combustors was quite large. And there were two flow turning points in their flow-path. Thus the wall cooling and main flow dilution were two intrinsic problems for them. Apart from that, their high pressure losses and heavy weight were also two problems which seriously deteriorate the performance of the engines. Moreover, their primary hole jets on opposite walls were non-symmetrical, which would affect the stability and intensity of the recirculation flows. In order to improve the combustion performance, a new conceptual Z-flowpath combustor was proposed. The new combustor consisted of two 45 degree yawing instead of returning in the main flow-path. The flowfield of the new combustor was predicted by the commercial code FLUENT, after a validation for the flowfield in a model reverse flow combustor with previous experimental results. The prediction showed that the flowfield of the primary zone in the Z-flowpath combustor was highly symmetrical, the size and the intensity of the recirculation zone were about 10 and 2 times greater than the normal reverse flow combustor, respectively, while the pressure loss and the total area of the flame tube wall of the Z-flowpath combustor were decreased dramatically to be 69.4% and 51% of that in the reverse flow combustor, respectively.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In