0

Full Content is available to subscribers

Subscribe/Learn More  >

Field Validation of a TBC Life-Prediction Model for Land-Based Gas Turbines

[+] Author Affiliations
K. S. Chan, N. S. Cheruvu

Southwest Research Institute® , San Antonio, TX

Paper No. GT2010-22226, pp. 921-928; 8 pages
doi:10.1115/GT2010-22226
From:
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 1: Aircraft Engine; Ceramics; Coal, Biomass and Alternative Fuels; Education; Electric Power; Manufacturing Materials and Metallurgy
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4396-3 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME

abstract

The coating life-prediction model, COATLIFE, was previously developed for estimating the lifetimes of first-stage blades and vanes in land-based power-generation gas turbines on the basis of degradation mechanisms observed in laboratory and field data. For first-stage blades with thermal barrier coatings (TBCs), degradation mechanisms treated in COATLIFE include thermo-mechanical fatigue (TMF), Al depletion due to bond coat oxidation, sintering of voids and microcracks in TBC, and curvature effects. Material constants in COATLIFE were evaluated using laboratory data and subsequently utilized with the model to predict the remaining life of first-stage blades in the field. In the present study, the predictive capabilities of COATLIFE were evaluated against field data obtained from first-stage blades with TBC extracted from land-based power generation gas turbines. The ex-service blades were sectioned to characterize the conditions of the TBC and bond coat after various times of service. For coating characterization, the Al content and volume fraction of the β phase in the bond coat, as well as the extent of oxidation and microcracking in the TBCs and along the TBC/bond coat interface at various locations of the blade were determined. These results were compared against model predictions generated by COATLIFE. Good agreement between the field data and model predictions validates the predictive capabilities of COATLIFE for estimating the oxidation lives for first-stage blades with TBCs.

Copyright © 2010 by ASME
Topics: Gas turbines

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In