0

Full Content is available to subscribers

Subscribe/Learn More  >

Fatigue Properties of Narrow and Wide Gap Braze Repaired Joints

[+] Author Affiliations
Thomas Henhoeffer

Liburdi Turbine Services Inc., Dundas, ON, Canada

Xiao Huang

Carleton University, Ottawa, ON, Canada

Scott Yandt, Peter Au

National Research Council Canada, Ottawa, ON, Canada

Paper No. GT2010-22085, pp. 879-889; 11 pages
doi:10.1115/GT2010-22085
From:
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 1: Aircraft Engine; Ceramics; Coal, Biomass and Alternative Fuels; Education; Electric Power; Manufacturing Materials and Metallurgy
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4396-3 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME and National Research Council of Canada

abstract

With the increasing utilization of braze repair in the gas turbine industry, the properties of braze joints under simulated service conditions become vital in selecting braze repair over other processes. While braze repair has often been claimed to deliver mechanical properties equivalent to that of the parent material; this is largely based on the results of tensile or accelerated creep tests. For most gas turbine hot section components failure occurs as a result of thermal fatigue or thermomechanical fatigue. The damage that occurs under such conditions cannot be assessed from tensile or creep testing. This study was undertaken to characterize the fatigue properties of narrow and wide gap brazed X-40 cobalt-based superalloy and compare these properties to that of the X-40 parent material. Butt joint narrow gap and wide gap specimens were vacuum brazed using BNi-9 braze alloy. X-40 and IN-738 were used as additive materials in wide gap braze joints. To characterize the fatigue properties of the braze joints and parent material, isothermal fatigue tests were conducted at 950°C and under load control using a fully reversed sinusoidal wave form having stress amplitude of 75% of the yield strength of the parent material. The braze specimens were fatigue tested in the as-brazed condition. The fatigue test results showed the fatigue lives of the brazed specimens were lower than that of the parent material, particularly for the narrow gap samples and wide gap samples containing IN-738 additive alloy. All fatigue failures in the brazed samples occurred in the braze joints. Analysis of the fracture surfaces using SEM revealed that porosity was the major contributing factor to fatigue failures in the wide gap braze joints. The testing life debit observed in the narrow gap braze samples can be attributed to the presence of brittle boride phases in the braze joint. This study also included examination of techniques for reducing the aforementioned porosity and presence of brittle intermetallic phases.

Copyright © 2010 by ASME and National Research Council of Canada

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In