0

Full Content is available to subscribers

Subscribe/Learn More  >

Importance of Auxiliary Power Consumption on Combined Cycle Performance

[+] Author Affiliations
S. Can Gülen

GE Energy, Schenectady, NY

Paper No. GT2010-22161, pp. 761-771; 11 pages
doi:10.1115/GT2010-22161
From:
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 1: Aircraft Engine; Ceramics; Coal, Biomass and Alternative Fuels; Education; Electric Power; Manufacturing Materials and Metallurgy
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4396-3 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME

abstract

The key product of a combined cycle power plant is electric power generated for industrial, commercial and residential customers. In that sense, the key performance metric that establishes the pecking order among thousands of existing, new, old, and planned power plants is the thermal efficiency. This is a ratio of net electric power generated by the plant to its rate of fuel consumption in the gas turbine combustors and, if applicable, heat recovery boiler duct burners. The term in the numerator of that simple ratio is subject to myriad ambiguities and/or misunderstandings, resulting primarily from the lack of a standardized definition agreed upon by all major players. More precisely, it is the lack of a standardized definition of the plant auxiliary power consumption (or load) that must be substracted from the generator output of all turbines in the plant, which then determines the net contribution of that power plant to the electric grid. For a combined cycle power plant, the key contributor to the plant’s auxiliary power load is the heat rejection system. In particular, any statement of combined cycle power plant thermal efficiency that does not specify (i) the steam turbine exhaust pressure, and (ii) the exhaust steam cooling system to achieve that pressure at the site ambient and loading conditions is subject to conjecture. Furthermore, for an assessment of the realism associated with the two in terms of economic and mechanical design feasibility, it is necessary to know the steam turbine exhaust end size and configuration. Using fundamental design principles, this paper provides a precise definition of the plant auxiliary load and quantifies its ramification on the plant’s net thermal efficiency. In addition, four standard auxiliary load levels are quantitatively defined based on a rigorous study of heat rejection system design considerations with a second-law perspective.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In