0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of Performance Deterioration Diagnosis Method for Gas Turbine Combined Cycle Power Plants

[+] Author Affiliations
Toru Takahashi, Eiichi Koda, Yoshinobu Nakao

Central Research Institute of Electric Power Industry, Yokosuka, Kanagawa, Japan

Paper No. GT2010-22081, pp. 733-738; 6 pages
doi:10.1115/GT2010-22081
From:
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 1: Aircraft Engine; Ceramics; Coal, Biomass and Alternative Fuels; Education; Electric Power; Manufacturing Materials and Metallurgy
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4396-3 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME

abstract

Recently, it is more necessary to maintain or improve the thermal efficiency of actual thermal power plants to reduce CO2 emission and energy consumption in the world, and it is also important to reduce the maintenance cost of commercial thermal power plants. Thus, it is crucial to investigate power plant performance deterioration factors and solve problems related to these factors promptly when the thermal efficiency decreases. However, it is difficult to understand the internal state of power plants sufficiently and to determine power plant performance deterioration factors only from operation data because actual thermal plants are composed of many components and are very complex systems. In particular, it is more difficult to understand performance deterioration in gas turbine combined cycle (GTCC) power plants than in steam power plants because the performance changes markedly in GTCC power plants depending on atmospheric conditions (temperature, pressure, humidity). In other words, when thermal efficiency changes, it is difficult to determine whether the cause is the change in external factors or that in the performance of the component. Therefore, we develop a method based on heat balance analysis to calculate the immeasurable quantity of state and the efficiency of each component in GTCC power plants, and to correct the performance of each component in a plant to a standard state using the performance function obtained from long-term operation data. Through the method, the analysis of the effects of deterioration factors on thermal efficiency becomes possible, and the performance of a plant can be simulated when the operation conditions are changed. Thus, we can determine the main factor that affects thermal efficiency using our method.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In