Full Content is available to subscribers

Subscribe/Learn More  >

Researches Concerning Kerosene-to-Landfill Gas Conversion for an Aero-Derivative Gas Turbine

[+] Author Affiliations
Jeni A. Popescu, Valeriu A. Vilag, Romulus Petcu, Valentin Silivestru, Virgil Stanciu

COMOTI Romanian Research and Development Institute for Gas Turbines, Bucharest, Romania

Paper No. GT2010-23436, pp. 639-648; 10 pages
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 1: Aircraft Engine; Ceramics; Coal, Biomass and Alternative Fuels; Education; Electric Power; Manufacturing Materials and Metallurgy
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4396-3 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME


The aero-derivative gas turbine represents an advanced solution for technologic transfer from aeronautics to industrial applications, including high efficiency, reduced dimensions and high reliability. The paper, as result of a research project, is focused on an application using an aero-derivative gas turbine as an installation for CO2 rich landfill gas valorization. The paper also presents the potential for landfill gas production in Romania, in the context of the requirements imposed by the environmental laws. A calculation is realized based on demographic statistics, showing the most suitable areas in the country for obtaining the landfill gas. The first part is dedicated to a comparative examination of classical liquid fuel, kerosene, and two gaseous fuels, methane and landfill gas with equal volume ratio of methane and carbon dioxide, analyzed from the point of view of their combustion performances in the gas turbine, with the help of CEA program developed by NASA. Considering the nowadays utilization of CFD simulations for design purpose in many activity fields from the engineering domain, the results provided by the CEA program, along with the ones provided by the gas turbine’s producer, were considered input data for the numerical approaches of the combustion process of methane and landfill gas in the known combustion chamber using a commercial CFD code. The main goal of the CFD applications is to determine the optimum geometric configuration of the new injection system in order to obtain a stabilized process and high performances in safety conditions, for low working regimes and nominal regime, as defined by experimental data and producer’s recommendations. Previous successful experimentations on test bench following the combustion simulation of methane gas and the encouraging results from the CFD simulations lead to new experimentations of the gas turbine working on landfill gas in order to validate the numerical approaches, activity described in the third part of the paper. A technological fueling scheme was designed, the geometrical adjustments were made according to previous simulations and the landfill gas was simulated using a homogenization device installed on the fuel line for a forced mixing of the two non-reactive substances, methane and carbon dioxide. The gas turbine was prepared and instrumented for bench testing and stable working was obtained for speeds of 27–63% of the nominal one. The conclusions are related to the execution of an installation allowing experimentation of gas turbines working on landfill gas and future researches focusing on tests for higher working regimes.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In