Full Content is available to subscribers

Subscribe/Learn More  >

Ethanol and Distillate Blends: A Thermodynamic Approach to Miscibility Issues

[+] Author Affiliations
Jean-Noël Jaubert, Romain Privat

LRGP - INPL, Nancy, France

Michel Molière

GE Energy, Belfort, France

Paper No. GT2010-22126, pp. 537-544; 8 pages
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 1: Aircraft Engine; Ceramics; Coal, Biomass and Alternative Fuels; Education; Electric Power; Manufacturing Materials and Metallurgy
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4396-3 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME


In the recent years, the quest for an ever wider cluster of sustainable primary energies has prompted an increasing number of attempts to combine the emission sobriety of bio fuels with the energy density advantage of fossil fuels. A number of compositions incorporating hydrocarbons, ethanol and in some cases limited amounts of water have been proposed, especially in the forms of micro emulsions, with a variable success. Indeed due to markedly different physical and chemical properties, ethanol and gasoil are able to blend and form homogeneous solutions only in limited proportion ranges. Indeed, such mixtures often give rise to liquid-liquid equilibrium. A key parameter is thus the Minimum Miscibility Temperature (MMT), i.e. the temperature above which ethanol and gasoil become completely miscible. In fact, commercial gasoils do not constitute a monolithic product but display in the contrary a large span of compositions that influence the stability of these blends. In this context, the LRGP laboratory (Laboratoire Réactions et Génie des Procédés) has undertaken an investigation program intended to understand the factors underlying the stability of ethanol/gasoil blends. The approach is based on the calculation of the liquid-liquid phase diagrams formed by anhydrous ethanol and a mixture of various hydrocarbons representative of the diesel oil pool using the group contribution concept. Indeed, for correlating thermodynamic properties, it is often convenient to regard a molecule as an aggregate of functional groups; as a result, some thermodynamic properties (heat of mixing, activity coefficients) can be calculated by summing group contributions. In this study, the universal quasichemical functional group activity coefficient (UNIFAC) method has been employed as it appears to be particularly useful for making reasonable estimates for the studied non ideal mixtures for which data are sparse or totally absent. In any group-contribution method, the basic idea is that whereas there are thousands of chemical compounds of interest in chemical technology, the number of functional groups that constitute these compounds is much smaller. Therefore, if we assume that a physical property of a fluid is the sum of contributions made by the molecule’s functional groups, we obtain a possible technique for correlating the properties of a very large number of fluids in terms of a much smaller number of parameters that characterize the contributions of individual groups. This paper shows the large influence exerted by the paraffinic, aromatic and naphthenic character of the gasoil but also the sulfur content of the fossil fraction on the shape of the liquid-liquid phase diagram and on the value of the minimum miscibility temperature.

Copyright © 2010 by ASME
Topics: Ethanol



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In