0

Full Content is available to subscribers

Subscribe/Learn More  >

Non-Destructive TBC Spallation Detection by a Micro-Indentation Method

[+] Author Affiliations
J. M. Tannenbaum, B. S.-J. Kang

West Virginia University, Morgantown, WV

M. A. Alvin

U.S. DOE National Energy Technology Laboratory, Pittsburgh, PA

Paper No. GT2010-23500, pp. 483-492; 10 pages
doi:10.1115/GT2010-23500
From:
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 1: Aircraft Engine; Ceramics; Coal, Biomass and Alternative Fuels; Education; Electric Power; Manufacturing Materials and Metallurgy
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4396-3 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME

abstract

In this research, a load-based depth-sensing micro-indentation method for spallation detection and damage assessment of thermal barrier coating (TBC) materials is presented. A non-destructive multiple loading/partial unloading testing methodology was developed where in stiffness responses of TBC coupons subjected to various thermal cyclic loading conditions were analyzed to predict the spallation site and assess TBC degradation state. The measured stiffness responses at various thermal loading cycles were used to generate time-series color maps for correlation with accumulation of TBC residual stress states. The regions with higher stiffness responses can be linked to a rise in out-of-plane residual stress located near or at the yttria stabilized zirconia (YSZ)/thermally grown oxide (TGO) interface, which is ultimately responsible for initiating TBC spallation failure. A TBC thermal exposure testing plan was carried out where time-series cross-sectional microstructural analyses of damage accumulation and spallation failure associated with the evolution of bond coat/TGO/top coat composite (e.g. thickness, ratcheting, localized oxidations, etc.) of air plasma sprayed (APS) TBCs were evaluated and correlated to the measured stiffness responses at various thermal cycles. The results show that the load-based micro-indentation test methodology is capable of identifying the spallation site(s) before actual occurrence. This micro-indentation technique can be viewed as a viable non-destructive evaluation (NDE) technique for determining as-manufactured and process-exposed TBCs. This technique also shows promise for the development of a portable instrument for on-line, in-situ spallation detection/prediction of industrial-size TBC turbine components.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In