0

Full Content is available to subscribers

Subscribe/Learn More  >

Simulation Framework Development for Aircraft Mission Analysis

[+] Author Affiliations
Ioannis Goulos, Vassilios Pachidis, Cesar Celis

Cranfield University, Bedfordshire, UK

Roberto D’Ippolito

LMS International, Leuven, Belgium

Jos Stevens

National Aerospace Laboratory NLR, Amsterdam, Netherlands

Paper No. GT2010-23379, pp. 341-351; 11 pages
doi:10.1115/GT2010-23379
From:
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 1: Aircraft Engine; Ceramics; Coal, Biomass and Alternative Fuels; Education; Electric Power; Manufacturing Materials and Metallurgy
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4396-3 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME

abstract

Since the very beginning of first commercial flight operations, aircraft mission analysis has played a major role in minimizing costs, increasing performances and satisfying regulations. The operational trajectory of any aircraft must comply with several constraints that need to be satisfied during its operation. The nature of these constraints can vary from Air Traffic Control (ATC) regulations, to emissions regulations and any combination between these two. The development of an integrated tool capable of determining the resources required (fuel and operational time) for a given aircraft trajectory, as well as assessing its environmental impact, is therefore essential. The present work illustrates the initial steps of a methodology developed in order to acquire the optimal trajectory of any specified aircraft under specific operational or environmental constraints. The simulation framework tool is the result of a collaborative effort between Cranfield University (UK), National Aerospace Laboratory NLR (NL) and LMS International (BE). With this tool, the optimal trajectory for a given aircraft can be computed and its environmental impact assessed. In order to simulate the characteristics of a specific trajectory, as well as to evaluate the emissions that are produced during the aircraft operation within it, three computational models developed at Cranfield University have been integrated into the simulation tool. These models consist of an aircraft performance model, an engine performance model and an emission indices model. The linking has been performed with the deployment of the OPTIMUS process and simulation integration framework developed by LMS International. The optimization processes carried out were based on OPTIMUS’ built-in optimizing algorithms. A comparative evaluation between an arbitrarily defined baseline trajectory and optimized ones has been waged for the purpose of quantifying the operational profit (in terms of fuel required or operational time) gained by the aircraft operation within the path of an optimized trajectory. Trade-off studies between trajectories optimized for different operational and environmental constraints have been performed. The results of the optimizations revealed a substantial margin available for reduction in fuel consumption as well as required operational time compared to a notional baseline. The optimal trajectories for minimized environmental impact in terms of produced emissions have been acquired and their respective required resources (fuel required and operational time) have been evaluated.

Copyright © 2010 by ASME
Topics: Simulation , Aircraft

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In