Full Content is available to subscribers

Subscribe/Learn More  >

Advanced Open Rotor Performance Modelling for Multidisciplinary Optimization Assessments

[+] Author Affiliations
Pablo Bellocq, Vishal Sethi, Luca Cerasi, Sebastian Ahlefelder, Riti Singh

Cranfield University, Cranfield, UK

Nicolas Tantot

Snecma, Moissy Cramayel, France

Paper No. GT2010-22963, pp. 287-302; 16 pages
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 1: Aircraft Engine; Ceramics; Coal, Biomass and Alternative Fuels; Education; Electric Power; Manufacturing Materials and Metallurgy
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4396-3 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME


As a consequence of increased stringent engine emission regulations, in a highly competitive market, it has become necessary to explore innovative, economic and environmentally friendly cycles to sustain competitive advantages. Among these innovative cycles, both the geared and the direct drive counter-rotating open rotors, due to their relatively higher propulsive efficiency, have the potential to significantly reduce fuel consumption and emissions relative to conventional high bypass ratio turbofans. A detailed TERA (Technoeconomic Environmental Risk Analysis), multidisciplinary optimisation framework, can be used to optimise both engines and thereby assess their potential as well as quantify their risks on a formal and consistent basis. This technique is based on detailed and rigorous engine performance, aircraft performance, engine geometry, engine weight, noise, gaseous emissions and environmental impact simulation models. No specific performance simulation methodology for counter rotating open rotors is available in the public domain. An innovative technique is introduced, comprising novel models of: • Counter-rotating propellers (including their interaction); • Counter-rotating turbines; • Planetary differential gearboxes. A thorough description of the modelling methodology (with a justification of the main assumptions) of each of these three components is presented and an indication of work in progress is provided. These components are then used to develop direct drive and geared open rotor performance models. The results of steady state design point and off design performance simulations of these two engine models are subsequently presented via two case studies. Some of the differences in the performance of the low pressure system of geared and direct drive open rotors are highlighted. It was observed that the impact of the key OR performance DP parameters is different for the two engines. Consequently the optimal design and control strategies of theses two configurations will differ. The flexibility of the new simulation technique makes it a suitable candidate to perform multi-disciplinary TERA design space exploration and optimisation studies assess and optimise open rotor designs and control strategies in a multidisciplinary framework.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In