0

Full Content is available to subscribers

Subscribe/Learn More  >

Parametric Modelling of a Spiral Bevel Gear Using CFD

[+] Author Affiliations
Thomas Webb, Carol Eastwick, Hervé Morvan

The University of Nottingham, Nottingham, UK

Paper No. GT2010-22632, pp. 229-238; 10 pages
doi:10.1115/GT2010-22632
From:
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 1: Aircraft Engine; Ceramics; Coal, Biomass and Alternative Fuels; Education; Electric Power; Manufacturing Materials and Metallurgy
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4396-3 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by Rolls-Royce plc

abstract

Initial results investigating windage power loss on a rotating shrouded spiral bevel gear using a parametric solid model and Computational Fluid Dynamics (CFD) are presented. The context behind this study is a desire to use CFD as a tool to investigate heat-to-oil within gas turbine bearing chambers and gearboxes in order to reduce costly rig-based experiments. This paper contains the methodology for creation of the parametric model of a spiral bevel gear in Pro/Engineer, formulation of a mesh in ICEM CFD and the subsequent CFD analysis in Fluent 6.2.26 and 12.0.16. A single tooth segment of a 91 teethed spiral bevel gear is produced with periodic boundaries imposed to reduce computational cost. Validation against experimental results for a single control gear is shown with particularly good correlation between static pressure rise across the face of the gear. Mesh verification is also presented. Using the model to change the module of the gear (effectively the number of teeth), investigations show that windage power loss reduces when the number of teeth increases. Analysis of the static pressure variation throughout the domain shows that all gears tested exhibit a linearly increasing relationship between non-dimensional mass-flow-rate and the pressure drop through the shroud restriction. The control gear was seen to have only a weak increase in static pressure gain across the gear tooth as the mass-flow-rate increases; however, a far larger increase exists for the module cases tested — at comparable mass-flow-rates to the control gear. As the number of teeth increase, the pressure gain across the gear reduces, and vice-versa. It is this difference between the gears that results in dissimilar windage power losses.

Copyright © 2010 by Rolls-Royce plc

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In