0

Full Content is available to subscribers

Subscribe/Learn More  >

Far-Field Noise Control in Supersonic Jets From Conical and Contoured Nozzles

[+] Author Affiliations
Jin-Hwa Kim, Martin Kearney-Fischer, Mo Samimy

The Ohio State University, Columbus, OH

Sivaram Gogineni

Spectral Energies, LLC, Dayton, OH

Paper No. GT2010-22377, pp. 125-134; 10 pages
doi:10.1115/GT2010-22377
From:
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 1: Aircraft Engine; Ceramics; Coal, Biomass and Alternative Fuels; Education; Electric Power; Manufacturing Materials and Metallurgy
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4396-3 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME

abstract

Plasma actuators are used to control far-field noise in Mach 1.65 jets from contoured and conical supersonic axisymmetric nozzles (henceforth contoured and conical jets, respectively). The contoured nozzle is designed using the method of characteristics for shock-free jet. The conical nozzle has converging and diverging conical sections with a sharp throat. Eight plasma actuators, distributed uniformly around the nozzle exit, are used and the jet is forced with azimuthal modes (m) 0–3, and ±4 and forcing Strouhal numbers ranging from 0.09 to 4.0. The far-field acoustic noise is measured by a linear microphone array covering polar angles from 25 to 80° relative to the jet axis. In both jets, the lower forcing azimuthal modes (m = 0 and 1) are less effective than the higher modes (m = 2, 3, and ±4), which have similar levels of overall sound pressure level (OASPL) reduction. At shallow angles relative to the jet axis, the reduction in OASPL is about 1.6–1.8 dB at low forcing Strouhal numbers in both jets at the most effective forcing mode of m = 3. However, the OASPL in the sideline direction is only slightly increased (about 1 dB) for both the contoured and conical jets at m = 3. The reduction at shallow polar angles is related to the decrease in the peak mixing noise level in both jets. The range of forcing Strouhal numbers providing significant noise reduction and the range of polar angles over which the noise is reduced, are both much larger in the conical jet compared to the contoured jet. The screech tones are also reduced or suppressed most likely due to weakening of naturally occurring structures by forcing.

Copyright © 2010 by ASME
Topics: Noise control , Jets , Nozzles

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In