0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Research on Microwave Induced Thermal Decomposition of Printed Circuit Board Wastes

[+] Author Affiliations
Zhixiao Zhang, Xintian Zhao

Hangzhou Dianzi University, Hangzhou, China

Eilhann Kwon, Marco J. Castaldi

Columbia University, New York, NY

Paper No. NAWTEC18-3536, pp. 15-21; 7 pages
doi:10.1115/NAWTEC18-3536
From:
  • 18th Annual North American Waste-to-Energy Conference
  • 18th Annual North American Waste-to-Energy Conference
  • Orlando, Florida, USA, May 11–13, 2010
  • Conference Sponsors: Solid Waste Processing Division and Environmental Engineering Division
  • ISBN: 978-0-7918-4393-2 | eISBN: 978-0-7918-3868-6
  • Copyright © 2010 by ASME

abstract

As a result of electronic industry development in China, significant amount of Printed Circuit Board (PCBs) wastes are generated. The thermal decomposition via combustion or pyrolysis/gasification is considered to be a feasible disposal way for PCBs. To understand the consequences of pyrolysis, gasification or combustion in WTE facilities, thermo-gravimetric analysis (TGA) has been carried to characterize the thermal decomposition mechanisms and extract the kinetic parameters in various atmospheres (N2 , CO2 and air) to simulate different regions in WTE applications. TGA tests in N2 atmosphere showed there was only one significant reaction in the low temperature range of 270∼350°C, which was the decomposition of epoxy resin in PCBs. The behavior in CO2 atmosphere was similar with that in N2 . However, the PCBs oxidation process in air atmosphere showed two thermal decomposition steps. One was the thermal decomposition similar to the volatilization in N2 atmosphere and the second step showed oxidation behavior. Some pre-processing was investigated to explore possible benefits in WTE combustion. PCBs waste was pyrolyzed using a microwave tubular furnace. The liquid product were collected and then identified by means of gas chromatography–mass spectrometry (GC–MS). Most of the Br contained in PCBs was released into non-condensable gas in the form of HBr. The liquid product contained a large amount of phenolic compounds, bisphenol A and other aromatic compounds that can be used to produce related chemical products or used in WTE facilities. The experimental results including the thermal kinetic parameters and microwave induced pyrolysis indicate the complex mechanisms that take place during the pyrolysis of PCBs wastes.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In