Full Content is available to subscribers

Subscribe/Learn More  >

Modeling the Effect of Hemodynamics on Cardiac Growth During Embryonic Development

[+] Author Affiliations
Sandra Rugonyi, Kent Thornburg

Oregon Health and Science University, Portland, OR

Paper No. NEMB2010-13171, pp. 297-298; 2 pages
  • ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology
  • ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology
  • Houston, Texas, USA, February 7–10, 2010
  • Conference Sponsors: ASME Nanotechnology Council
  • ISBN: 978-0-7918-4392-5 | eISBN: 978-0-7918-3866-2
  • Copyright © 2010 by ASME


Congenital heart disease (CHD) affects about 1% of newborn babies in the US, and is the leading cause of non-infectious death in children. Abnormal blood flow dynamics during early development can lead to CHD. Although the effect of hemodynamic conditions on cardiac development — even under normal conditions — has been widely accepted, the mechanisms by which blood flow influences cardiac cell responses are only starting to emerge. Mathematical models of cardiac growth could then help elucidate key aspects of cardiac development.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In