0

Full Content is available to subscribers

Subscribe/Learn More  >

Functional Nanodiamond Internalization Mechanisms and Kinetics

[+] Author Affiliations
Robert Lam, Xueqing Zhang, Mark Chen, Dean Ho

Northwestern University, Evanston, IL

Paper No. NEMB2010-13339, pp. 243-244; 2 pages
doi:10.1115/NEMB2010-13339
From:
  • ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology
  • ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology
  • Houston, Texas, USA, February 7–10, 2010
  • Conference Sponsors: ASME Nanotechnology Council
  • ISBN: 978-0-7918-4392-5 | eISBN: 978-0-7918-3866-2
  • Copyright © 2010 by ASME

abstract

Several reports have described the relationship between size, aspect ratio, surface modification and internalization for a variety of nanoparticles (i.e. gold, polymer, carbon nanotubes). Nanodiamonds (NDs) in particular have recently been implicated in a variety of biomedical applications. One of the most promising is in utilizing NDs as drug delivery carriers where successful internalization is of utmost importance. A few reports recently have demonstrated the energy dependent internalization of bare NDs. In this report, we investigate the internalization mechanism and kinetics of functional ND-conjugate translocation.

Copyright © 2010 by ASME
Topics: Mechanisms

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In