Full Content is available to subscribers

Subscribe/Learn More  >

Mechanical and In-Vitro Cell Compatibility Properties of Silk-Elastinlike Protein-Based Biomaterial

[+] Author Affiliations
Weibing Teng, Yiding Huang, Xiaoyi Wu

University of Arizona, Tucson, AZ

Joseph Cappello

Protein Polymer Technologies, Inc., San Diego, CA

Paper No. NEMB2010-13141, pp. 209-210; 2 pages
  • ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology
  • ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology
  • Houston, Texas, USA, February 7–10, 2010
  • Conference Sponsors: ASME Nanotechnology Council
  • ISBN: 978-0-7918-4392-5 | eISBN: 978-0-7918-3866-2
  • Copyright © 2010 by ASME


A series of genetically engineered recombinant silk-elastinlike proteins (SELPs) have been produced by combining polypeptide sequences derived from native silk of superior mechanical strength and elastin that is extremely durable and resilient. They have displayed a set of outstanding properties such as good biocompatibility and controllable biodegradation rates. In the study, we characterized the mechanical property of genetically engineered, recombinant silk-elastinlike protein copolymer, SELP-47K, under physical and chemical treatments. The biocompatibility of the SELP-47K was also evaluated by cell culture. The ultimate goal of this study is to explore the potential of SELPs for applications in the engineering of load-bearing tissues such as arteries.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In