0

Full Content is available to subscribers

Subscribe/Learn More  >

A Micro-Architectural Based Structural Model for Elastomeric Electrospun Scaffolds

[+] Author Affiliations
Antonio D’Amore

University of Pittsburgh, Pittsburgh, PA; University of Palermo, Palermo, Italy

John A. Stella, David E. Schmidt, William R. Wagner, Michael S. Sacks

University of Pittsburgh, Pittsburgh, PA

Paper No. NEMB2010-13344, pp. 181-182; 2 pages
doi:10.1115/NEMB2010-13344
From:
  • ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology
  • ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology
  • Houston, Texas, USA, February 7–10, 2010
  • Conference Sponsors: ASME Nanotechnology Council
  • ISBN: 978-0-7918-4392-5 | eISBN: 978-0-7918-3866-2
  • Copyright © 2010 by ASME

abstract

Interest in electrospun polymeric nano-microfibers for tissue engineering applications has rapidly grown during the last decade. In spite of this technique’s flexibility and ability to form complex fiber assemblies, additional studies are required to elucidate how the fibrous microstructure translates into specific tissue (or meso-scale) level mechanical behavior. Deterministic structural models can quantify how key structures contribute to the mechanical response as a function of bulk deformation across multiple scales, as well as provide a better understanding of cellular mechanical response to local micro-structural deformations. Our ultimate aim is to utilize such models to assist tissue engineering scaffold design. In the current work, we present a novel approach to automatically quantify key micro-architectural descriptors (fiber overlaps, connectivity, orientation, and diameter) from SEM images of electrospun poly (ester urethane) urea (PEUU) to recreate statistically equivalent scaffold mechanical models. An appropriate representative volume element (RVE) size was determined by quantifying the point of stabilization of the architectural descriptors over image areas of increasing size. Material models were then generated specifying: fiber overlap density, fiber orientation, connectivity and fiber diameter. Macro-meso mechanical response was predicted via FEM simulations.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In