0

Full Content is available to subscribers

Subscribe/Learn More  >

A Microfluidic Assay for Metastasis Potential Analysis

[+] Author Affiliations
Smitha M. N. Rao, Uday Tata

The University of Texas at Arlington, Arlington, TX

Victor K. Lin, Jer-Tsong Hsieh

UT Southwestern Medical Center at Dallas, Dallas, TX

Kytai Nguyen, J. -C. Chiao

University of Texas at Arlington, Arlington, TX

Paper No. NEMB2010-13300, pp. 143-144; 2 pages
doi:10.1115/NEMB2010-13300
From:
  • ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology
  • ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology
  • Houston, Texas, USA, February 7–10, 2010
  • Conference Sponsors: ASME Nanotechnology Council
  • ISBN: 978-0-7918-4392-5 | eISBN: 978-0-7918-3866-2
  • Copyright © 2010 by ASME

abstract

We have designed and characterized a poly-dimethyl-siloxane (PDMS) based microfluidic device called MiMiC™ that enables time-lapse study of cell migration. Cell migration is a key step of malignant metastasis during cancer progression. The device mimics the narrow confines the cells need to traverse and the microenvironments that are similar to the ones inside human body. Photolithography and soft lithography processes were used to fabricate the microfluidic devices. The device consists of two separate chambers connected by microfluidic channels allowing introduction of cells in one chamber and chemoattractants in the other. The response of lung-metastasized prostate cancer (PC-3-ML) cells and their migration response to chemoattractants were observed and analyzed. The numbers of cells under migration were determined from time-lapse images and compared to control groups. Our microfluidic assays provide advantages over the traditional Boyden chambers such as time-lapse observation, use of smaller amounts of reagents and direct assessment of cells under migration.

Copyright © 2010 by ASME
Topics: Microfluidics

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In