Full Content is available to subscribers

Subscribe/Learn More  >

Enhanced Tumor Cell Separation by Surfaces Functionalized With Combinations of Bioadhesive Proteins

[+] Author Affiliations
Ja Hye Myung, Cari A. Launiere, Khyati A. Gajjar, David T. Eddington, Seungpyo Hong

University of Illinois at Chicago, Chicago, IL

Paper No. NEMB2010-13210, pp. 125-126; 2 pages
  • ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology
  • ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology
  • Houston, Texas, USA, February 7–10, 2010
  • Conference Sponsors: ASME Nanotechnology Council
  • ISBN: 978-0-7918-4392-5 | eISBN: 978-0-7918-3866-2
  • Copyright © 2010 by ASME


Effective detection of circulating tumor cells (CTCs) can provide important diagnostic and prognostic information of metastatic cancer. However, CTCs are extremely rare and estimated to be only in the range of one tumor cell in the background of 106 –109 normal blood cells, hindering clinically significant detection.[1–2] The specific capturing and potential enrichment of CTCs using anti-epithelial cell adhesion molecule (anti-EpCAM)[3] and selectin, respectively, inspire a biofunctionalized surface that mimics biological complexity may detect and isolate target cells at a greater sensitivity and specificity. This concept is supported by the initial physiological interactions between CTCs and endothelium in the bloodstream, which include concurrent rolling and stationary binding steps. Towards this aim, we investigated the following: i) two proteins with distinct biofunctions (selectin to induce rolling and anti-EpCAM to statically capture target cells) can be co-immobilized; ii) a combined rolling and stationary binding can be induced by the mixture of the proteins; and iii) the biomimetic combination enhances overall capture efficiency of the surface. As a proof-of-concept study for the hypothesis of enhanced separation capacity and capture efficiency using protein mixtures, the surfaces are tested using in vitro cell lines (MCF-7 cells as a CTC model and HL-60 cells as a leukocyte model) under flow conditions. The effects of the combination of rolling (E-selectin) and stationary binding (anti-EpCAM) on capture efficiency are compared to a surface functionalized solely with anti-EpCAM.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In