0

Full Content is available to subscribers

Subscribe/Learn More  >

Poly-Silicon Nanowire FET Chemical Sensor

[+] Author Affiliations
Chih-ting Lin, Che-wei Huang, Jui-ching Wang

National Taiwan University, Taipei, Taiwan

Paper No. NEMB2010-13124, pp. 19-20; 2 pages
doi:10.1115/NEMB2010-13124
From:
  • ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology
  • ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology
  • Houston, Texas, USA, February 7–10, 2010
  • Conference Sponsors: ASME Nanotechnology Council
  • ISBN: 978-0-7918-4392-5 | eISBN: 978-0-7918-3866-2
  • Copyright © 2010 by ASME

abstract

Based on the improvements of the fabrication technologies, the dimension of the device has decreased to tens of nanometer. The nano-technology has become intriguing to integrate semiconductor technologies into bio-related applications. As the consequence, silicon nanowires (Si NWs) have been proposed to detect proteins, DNA, virus, and ions etc. However, few of previous studies consider the possibility to merge with CMOS standard process. In this work, we announced CMOS compatible technique which is used to develop polysilicon nanowire field effect transistor (poly-Si NW FET) as a chemical sensor to address this issue.

Copyright © 2010 by ASME
Topics: Sensors , Nanowires , Silicon

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In