Full Content is available to subscribers

Subscribe/Learn More  >

Transient Heat Transfer Simulation of the Coupling 3-D Moving Piston Assembly-Lubricant Film-Liner System

[+] Author Affiliations
Liu Zhien, Jiang Yankun, Chen Guohua, Yang Wanli

Huazhong University of Science and Technology

Paper No. IMECE2006-15481, pp. 559-565; 7 pages
  • ASME 2006 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Volume 3
  • Chicago, Illinois, USA, November 5 – 10, 2006
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-4786-1 | eISBN: 0-7918-3790-4
  • Copyright © 2006 by ASME


Transient heat transfer model of the coupling 3-D moving piston assembly-lubricant film-liner system is successfully developed for predicting the temperature distributions in the component system of internal combustion chamber, in which the effect of the friction heat generated at the piston ring/cylinder liner interfaces has been taken into account. The finite element method (FEM) is employed in the model for establishing the heat transfer relation among the moving piston assembly-lubricant film-cylinder liner. The 3-D discrete model of the coupling system is obtained by hypothesizing the lubricant film as 1-D thermal resistances and the friction heat as heat flux boundary conditions. The allocation and distribution model of friction heat on piston ring pack and liner are also established. The 3-D coupling heat transfer model has been used to analyze the heat transfer of a gasoline engine.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In