Full Content is available to subscribers

Subscribe/Learn More  >

Optimization of Micro Channel Morphology

[+] Author Affiliations
Aleksander Vadnjal, Ivan Catton

University of California at Los Angeles

Paper No. IMECE2006-15923, pp. 309-315; 7 pages
  • ASME 2006 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Volume 3
  • Chicago, Illinois, USA, November 5 – 10, 2006
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-4786-1 | eISBN: 0-7918-3790-4
  • Copyright © 2006 by ASME


An increasing demand for a higher heat flux removal capability within a smaller volume for high power electronics led us to focus on micro channels in contrast to the classical heat fin design. A micro channel can have various shapes to enhance heat transfer, but the shape that will lead to a higher heat flux removal with a moderate pumping power needs to be determined. The standard micro-channel terminology is usually used for channels with a simple cross section, e.g. square, round, triangle, etc., but here the micro channel cross section is going to be expanded to describe more complicated and interconnected micro scale channel cross sections. The micro channel geometries explored are pin fins (in-line and staggered), parallel plates and sintered porous micro channels (see Fig.1). The problem solved here is a conjugate problem involving two heat transfer mechanisms; 1) porous media effective conductivity and 2) internal convective heat transfer coefficient. Volume averaging theory (VAT) is used to rigorously cast the point wise conservation of energy, momentum and mass equations into a form that represents the thermal and hydraulic properties of the micro channel (porous media) morphology. Using the resulting VAT based field equations, optimization of a micro channel heated from one side is used to determine the optimum micro channel morphology. A small square of 1 cm 2 is chosen as an example and the thermal resistance, 0 C/W, and pressure drop are shown as a function of Reynolds number.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In