0

Full Content is available to subscribers

Subscribe/Learn More  >

Energy Flow in the Information Technology Stack: Introducing the Coefficient of Performance of the Ensemble

[+] Author Affiliations
Chandrakant D. Patel, Ratnesh K. Sharma, Cullen E. Bash, Monem H. Beitelmal

Hewlett Packard Laboratories

Paper No. IMECE2006-14830, pp. 233-241; 9 pages
doi:10.1115/IMECE2006-14830
From:
  • ASME 2006 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Volume 3
  • Chicago, Illinois, USA, November 5 – 10, 2006
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-4786-1 | eISBN: 0-7918-3790-4
  • Copyright © 2006 by ASME

abstract

The information technology industry is in the midst of a transformation to lower the cost of operation through consolidation and better utilization of critical data center resources. Successful consolidation necessitates increasing utilization of capital intensive "always-on" data center infrastructure, and reducing the recurring cost of power. A need exists, therefore for an end to end physical model that can be used to design and manage dense data centers and determine the cost of operating a data center. The chip core to the cooling tower model must capture the power levels and thermo-fluids behavior of chips, systems, aggregation of systems in racks, rows of racks, room flow distribution, air conditioning equipment, hydronics, vapor compression systems, pumps and heat exchangers. Earlier work has outlined the foundation for creation of a "smart" data center through use of flexible cooling resources and a distributed sensing and control system that can provision the cooling resources based on the need. This paper shows a common thermodynamic platform which serves as an evaluation and basis for policy based control engine for such a "smart" data center with much broader reach - from chip core to the cooling tower. Computational Fluid Dynamics modeling is performed to determine the computer room air conditioning utilization for a given distribution of heat load and cooling resources in a production data center. Coefficient of performance (COP) of the computer room air conditioning units, based on the level of utilization, is used with COP of other cooling resources in the stack to determine the COP of the ensemble. The ensemble COP represents an overall measure of the performance of the heat removal stack in a data center.

Copyright © 2006 by ASME
Topics: Flow (Dynamics)

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In