0

Full Content is available to subscribers

Subscribe/Learn More  >

Performance Evaluation of Half-Wetted Hydrodynamic Bearings With DLC Coated Surfaces

[+] Author Affiliations
Andrew Z. Hunsberger, Said Jahanmir, Hooshang Heshmat

Mohawk Innovative Technology, Inc., Albany, NY

Osman Eryilmaz, Ali Erdemir

Argonne National Laboratory, Argonne, IL

Paper No. IJTC2007-44207, pp. 241-243; 3 pages
doi:10.1115/IJTC2007-44207
From:
  • ASME/STLE 2007 International Joint Tribology Conference
  • ASME/STLE 2007 International Joint Tribology Conference, Parts A and B
  • San Diego, California, USA, October 22–24, 2007
  • Conference Sponsors: Tribology Division
  • ISBN: 0-7918-4810-8 | eISBN: 0-7918-3811-0
  • Copyright © 2007 by ASME

abstract

In conventional liquid lubrication it is assumed that surfaces are fully wetted and no slip occurs between the fluid and the solid boundary. Under the “no slip” condition the maximum shear gradient occurs at the fluid-surface interface. When one or both surfaces are non-wetted by the fluid, boundary slip can occur due to weak bonding between the fluid and the solid surface, which reduces shear stresses in the fluid adjacent to the non-wetted surface. A thrust bearing tribometer was used to compare the performance of “no slip” hydrodynamic thrust bearings with bearings surfaces that were made to slip at the interface between the surface and fluid. Hydrophobic surfaces on both runner and bearing were achieved with the deposition of hydrogenated diamond like carbon (H-DLC) films, produced by plasma-enhanced CVD on titanium alloy surfaces. Hydrophilic surfaces were created through the surface modification of DLC. A mixtures of water and glycerol was used as the lubricant. The tests were conducted using different constant bearing gaps. The normal load and the torque or traction force between the rotating runner and hydrodynamic thrust bearing were measured with load cells. The experimental results confirmed that load support is still possible when surfaces are partially-wetted or non-wetted.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In