Full Content is available to subscribers

Subscribe/Learn More  >

Modeling of a 3-Dimensional Conjugate Heat Transfer on the Channel-Composite-Wall for Electronics Cooling

[+] Author Affiliations
K. Yazawa

Sony Corporation

H. Yoshino, Y. Nishino, S. Nakagawa, M. Ishizuka

Toyama, Prefectural University

Paper No. IMECE2006-13524, pp. 61-66; 6 pages
  • ASME 2006 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Volume 3
  • Chicago, Illinois, USA, November 5 – 10, 2006
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-4786-1 | eISBN: 0-7918-3790-4
  • Copyright © 2006 by ASME


We report the modeling of a novel approach to passive heat transfer from electronic equipment through an enclosure wall with built-in vertical channels. This passive cooling method is based on the different temperature requirements between the enclosure surface and the internal heat-generating devices. This approach takes advantage of natural convection, known as the chimney effect, resulting from higher temperatures in vertically oriented channels. In addition to channel convection, the skin surface exposed to the environment dissipates the heat passively by both natural convection and radiation. The configuration of the wall and channels, termed a Channel-Composite-Wall (CCW), creates a novel form of passive cooling that we have analyzed and modeled. The inner side of the CCW is assumed to be uniformly heated. The three-dimensional flow regime is observed by means of PIV (particle image velocimetry) experiments and numerical studies. The unique velocity profile inside each channel is observed and can be regarded as similar to the flow in the differently heated parallel plates. The channel flow is modeled by breaking the channel down into two sections plus the exposed skin wall. Based on these observations, the relationship between the internal flow field and external convective flow can be considered to be handled separately. The thermal characteristic is also studied based on the correlations. The thermal conductivity and thickness of the solid partition of channels are found to be significant contributors to performance. The analytic model of the CCW was verified by numerical calculations and experiments. The model reasonably closely expresses the characteristics of this comprehensive conjugate heat transfer. The model can thus be used for the development of passively cooled electronics enclosure.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In