0

Full Content is available to subscribers

Subscribe/Learn More  >

Approximate Analytical Model for a First Level Package With Non-Uniformly Powered Die

[+] Author Affiliations
Abhijit Kaisare, Dereje Agonafer, A. Haji-Sheikh

University of Texas at Arlington

Greg Chrysler, Ravi Mahajan

Intel Corporation

Paper No. IMECE2006-13436, pp. 43-49; 7 pages
doi:10.1115/IMECE2006-13436
From:
  • ASME 2006 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Volume 3
  • Chicago, Illinois, USA, November 5 – 10, 2006
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-4786-1 | eISBN: 0-7918-3790-4
  • Copyright © 2006 by ASME

abstract

Microprocessors continue to grow in capabilities, complexity and performance. Microprocessors typically integrate functional components such as logic and level two (L2) cache memory in their architecture. This functional integration of logic and memory results in improved performance of the microprocessor as the clock speed increases and the instruction execution time has decreased. However, the integration also introduces a layer of complexity to the thermal design and management of microprocessors. As a direct result of function integration, the power map on a microprocessor is typically highly non-uniform and the assumption of a uniform heat flux across the chip surface is not valid. The active side of the die is divided into several functional blocks with distinct power assigned to each functional block. Previous work [1,2] has been done to minimize the thermal resistance of the package by optimizing the distribution of the non-uniform powered functional blocks with different power matrices. This study further gives design guideline and key pointers to minimized thermal resistance for any number of functional blocks for a given non-uniformly powered microprocessor. In this paper, initially (Part I) temperature distribution of a typical package consisting of a uniformly powered die, heat spreader, TIM 1 & 2 and the base of the heat sink is calculated using an approximate analytical model. The results are then compared with a detailed numerical model and the agreement is within 5%. This study follows (Part II) with a thermal investigation of non-uniform powered functional blocks with a different power matrices with focus on distribution of power over die surface with an application of maximum, minimum and average uniform junction temperature over a given die area. This will help to predict the trend of the calculated distribution of power that will lead to the least thermal gradient over a given die area. This trend will further help to come up with design correlations for minimizing thermal resistance for any number of functional blocks for a given non-uniformly powered microprocessor numerically as well as analytically. The commercial finite element code ANSYS® is used for this analysis as a numerical tool.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In