0

Full Content is available to subscribers

Subscribe/Learn More  >

Modeling of CO2 Gas Excitation Under CO2 Laser Irradiation

[+] Author Affiliations
Lan Jiang, Hai-Lung Tsai

University of Missouri at Rolla

Paper No. IMECE2006-15625, pp. 671-677; 7 pages
doi:10.1115/IMECE2006-15625
From:
  • ASME 2006 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Volume 2
  • Chicago, Illinois, USA, November 5 – 10, 2006
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-4785-3 | eISBN: 0-7918-3790-4
  • Copyright © 2006 by ASME

abstract

Lasers especially multiple laser beams demonstrate unique advantages as energy sources in diamond synthesis. However, the fundamental mechanisms involved in the laser-assisted processes are not Well understood. In a reported amazingly-fast multiple laser coating technique, CO2 gas is claimed as the sole precursor or secondary precursor, which remains poorly understood and unverified. The absorption coefficient changes under the irradiation of the multiple lasers are one of the keys to resolve the mysteries of multiple laser beam coating processes. This study investigates the optical absorption in CO2 gas at the CO2 laser wavelength. This resonance absorption process is modeled as an inverse process of the lasing transitions of CO2 lasers. The well-established CO2 vibrational-rotational energy structures are used as the basis for the calculations with the Boltzmann distribution for equilibrium states and the three-temperature model for non-equilibrium states. Based on the population distribution, our predictions of CO2 absorption coefficient changes as the function of temperature are in agreement with the published data.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In