0

Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Superposition on Spanwise Film-Cooling Effectiveness Distribution on a Gas Turbine Blade

[+] Author Affiliations
Shantanu Mhetras, Je-Chin Han

Texas A&M University

Paper No. IMECE2006-15084, pp. 477-487; 11 pages
doi:10.1115/IMECE2006-15084
From:
  • ASME 2006 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Volume 2
  • Chicago, Illinois, USA, November 5 – 10, 2006
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-4785-3 | eISBN: 0-7918-3790-4
  • Copyright © 2006 by ASME

abstract

The effect of film cooling holes placed along the span of high pressure turbine blade in a 5 bladed linear cascade on film cooling effectiveness is studied using the Pressure Sensitive Paint (PSP) technique. Four rows of film cooling holes are provided on the pressure side while two such rows are provided on the suction side of the blade. Around 22 cylindrical holes with a diameter of 0.65mm are drilled in each row at a compound angle of 45° to the blade span in the radial direction and at 45° in the axial direction. Film cooling effectiveness over the entire blade region is determined from full coverage film cooling with coolant blowing from all rows and from each individual row. The effect of superposition of film cooling effectiveness from each individual row is then compared with full coverage film cooling. The coolant is injected at four different average blowing ratios of 0.6, 0.9, 1.2 and 1.5. The free stream Reynolds number, based on the axial chord length and the exit velocity, is 750,000 and the inlet and the exit Mach numbers are 0.27 and 0.44, respectively resulting in a blade pressure ratio of 1.14. Turbulence intensity level at the cascade inlet is 6% with an integral length scale of around 5cm. Results show that the effectiveness magnitudes from superposition of effectiveness data from individual rows are comparable with that from full coverage film cooling. Varying blowing ratios can have a significant impact on film-cooling effectiveness distribution with a blowing ratio of 0.6 showing highest effectiveness immediately downstream of the holes.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In