0

Full Content is available to subscribers

Subscribe/Learn More  >

Boiling Flow Interaction Between Two Parallel Microchannels

[+] Author Affiliations
Roger D. Flynn, David W. Fogg, Jae-Mo Koo, Ching-Hsiang Cheng, Kenneth E. Goodson

Stanford University

Paper No. IMECE2006-14696, pp. 317-322; 6 pages
doi:10.1115/IMECE2006-14696
From:
  • ASME 2006 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Volume 2
  • Chicago, Illinois, USA, November 5 – 10, 2006
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-4785-3 | eISBN: 0-7918-3790-4
  • Copyright © 2006 by ASME

abstract

Microchannel heat exchangers predominately use a parallel channel configuration to maximize heat transfer with minimal pump demand. Previous work optimized bulk performance of liquid flow heat exchangers but noted that upon boiling, flow redistributed among parallel channels, and they ultimately found that this instability caused an uncontrollable operating condition. This work predicts and measures fully coupled boiling flow interaction in a simplified two microchannel system. A series of silicon microfabricated devices enable piecewise study of the coupled fluidic and heat transfer interactions, first uniting the fluid inlets of thermally isolated channels, then connecting neighboring channel walls to allow heat transfer between channels. Multiple combinations of boiling and liquid flow, each satisfying system boundary conditions, are identified using flow demand curves assembled from single channel data. Each unique flow condition is experimentally demonstrated and found to be heavily dependent on the prior state of the channels. Connecting channel walls, thermally, is shown to lessen the number of allowed solutions and increase instability in the two channel system, allowing distinction between purely fluidic instabilities and fluidic instabilities coupled to heat transfer between channels. This work in describing interaction between two channels is a necessary step as work continues toward characterizing flow boiling in more complex parallel channel heat sinks.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In