Full Content is available to subscribers

Subscribe/Learn More  >

Performance of Two-Phase Microchannels at Sub-Atmospheric Pressure

[+] Author Affiliations
Tao Tong

University of California at Berkeley

Shankar Devasenathipathy, Je-Young Chang, John Dirner, Suzana Prstic, Ravi S. Prasher

Intel Corporation

Paper No. IMECE2006-13144, pp. 183-192; 10 pages
  • ASME 2006 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Volume 2
  • Chicago, Illinois, USA, November 5 – 10, 2006
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-4785-3 | eISBN: 0-7918-3790-4
  • Copyright © 2006 by ASME


Two-phase microchannel system is a promising technology to achieve enhanced heat removal and more effective cooling of hotspots. The excellent thermodynamic properties of water make it a prime candidate as the working fluid in two-phase microchannel systems. While typical integrated circuit components require die temperature to remain below 95 °C, most of the earlier microchannel flow boiling studies were conducted at or above ambient pressure, where the saturation temperature of water is equal to or higher than 100 °C. In this paper, we tested flow boiling at sub-atmospheric pressure such that the saturation temperature of water can be significantly reduced below 95 °C. We study the pressure drop and heat transfer characteristics of our two-phase cold plate configuration, under uniform and hotspot (non-uniform) heating conditions at sub-atmospheric system pressures. A cold plate with 61 μm wide and 272 μm deep microchannels was tested at two systems pressures of 35 and 46 kPa and at two mass flow rates of 67 and 107 kg/m2 -s. High-speed flow imaging was used for identifying flow patterns in the microchannels with the above test conditions. Pressure drop data were compared with the available semi-empirical correlations and the annular flow model. An explanation was proposed for the mismatch between the models under current microchannel configuration.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In