0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Investigation of Oxygen Addition to Fuel on Soot Formation in Laminar Coflow Diffusion Flames of Ethylene and Propane

[+] Author Affiliations
Fengshan Liu, Kevin A. Thomson, Gregory J. Smallwood

National Research Council Canada

Paper No. IMECE2006-15988, pp. 119-125; 7 pages
doi:10.1115/IMECE2006-15988
From:
  • ASME 2006 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Volume 2
  • Chicago, Illinois, USA, November 5 – 10, 2006
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-4785-3 | eISBN: 0-7918-3790-4
  • Copyright © 2006 by National Research Council Canada

abstract

Investigation of the effect of oxygen addition to fuel on the visible flame appearance and soot formation characteristics of laminar diffusion flames is important to gain comprehensive understanding of gas-phase combustion chemistry and its interaction with soot chemistry. This paper reports experimental results of oxygen addition to fuel on the visible flame height and soot volume fraction distributions in axisymmetric coflow laminar ethylene and propane diffusion flames at atmospheric flames. The carbon flow rate was maintained constant in all the experiments. Although many experimental studies have been conducted in the literature in this topic, the present investigation aimed at providing spatially resolved soot volume fraction distributions over the entire range of oxygen addition from no oxygen addition up to the point of flashback while keeping the carbon mass flow rate constant. The level of oxygen added to fuel right before flashback is about 45% (the percentage of oxygen addition is always by volume in this study) of the fuel flow rate in the ethylene flame and 300% of the fuel flow rate in the propane flame. As the added oxygen amount to ethylene increases, the visible flame height first increases. When the added oxygen flow rate is about 13% of the fuel flow rate, the flame becomes smoking, i.e., soot escapes from the flame tip. When the oxygen flow rate reaches about 42% of the fuel flow rate, the flame stops smoking. When oxygen was added to propane, the visible flame height linearly decreases with increasing the amount of oxygen. These very different effects of oxygen addition to ethylene and propane indicate that oxygen plays a drastically different role in the chemical pathways leading to soot formation in ethylene and propane flames. Distributions of soot volume fractions in these flames were measured using a 2D light attenuation technique coupled with the Abel inversion. The present study provides valuable experimental data for validating soot models.

Copyright © 2006 by National Research Council Canada

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In