0

Full Content is available to subscribers

Subscribe/Learn More  >

Study on Copper Cold Plate Designs for Electronics Liquid Cooling System

[+] Author Affiliations
Yi. Feng, Y. Wang, C. Y. Huang

Foxconn FTC Technology, Inc.

Paper No. IMECE2006-16242, pp. 759-766; 8 pages
doi:10.1115/IMECE2006-16242
From:
  • ASME 2006 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Volume 1
  • Chicago, Illinois, USA, November 5 – 10, 2006
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-4784-5 | eISBN: 0-7918-3790-4
  • Copyright © 2006 by ASME

abstract

The increasing power consumption of microelectronic systems and the dense layout of semiconductor components leave very limited design spaces with tight constraints for the thermal solution. Conventional thermal management approaches, such as extrusion, fold-fin, and heat pipe heat sinks, are somehow reaching their performance limits, due to the geometry constraints. Currently, more studies have been carried out on the liquid cooling technologies, as the flexible tubing connection of liquid cooling system makes both the accommodation in constrained design space and the simultaneous cooling of multi heating sources feasible. To significantly improve the thermal performance of a liquid cooling system, heat exchangers with more liquid-side heat transfer area with acceptable flow pressure drop are expected. This paper focuses on the performance of seven designs of source heat exchanger (cold plate). The presented cold plates are all made in pure copper material using wire cutting, soldering, brazing, or sintering process. Enhanced heat transfer surfaces such as micro channel and cooper mesh are investigated. Detailed experiments have been conducted to understand the performance of these seven cooper cold plates. The same radiators, fan, and water pump were connected with each cooper cold plate to investigate the overall thermal performance of liquid cooling system. Water temperature readings at the inlets and outlets of radiators, pump, and colder plate have been taken to interpret the thermal resistance distribution along the cooling loop.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In