Full Content is available to subscribers

Subscribe/Learn More  >

Design of a Ceramic Heat Exchanger for Sulfuric Acid Decomposition

[+] Author Affiliations
Merrill A. Wilson, Charles Lewinsohn, James Cutts

Ceramatec, Inc.

Valery Ponyavin

University of Nevada at Las Vegas

Paper No. IMECE2006-16044, pp. 743-750; 8 pages
  • ASME 2006 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Volume 1
  • Chicago, Illinois, USA, November 5 – 10, 2006
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-4784-5 | eISBN: 0-7918-3790-4
  • Copyright © 2006 by ASME


It has been proposed that compact ceramic heat exchangers can be used for high temperature, corrosive applications. This paper discusses the design development of a micro-channel heat exchanger for the decomposition of sulfuric acid as part of the hydrogen producing sulfur iodine thermo-chemical cycle. Corrosion studies of candidate materials indicate that ceramic materials have superior corrosion and creep resistance under these high temperature, high acid concentration environments. This compact heat exchanger utilizes micro-channels to enhance the heat transfer while maintaining low pressure drops within the system. Through modular stacking of these micro-channel networks, a "shell and plate" configuration enables the processing of commercial-scale processes. The ceramic materials provide for long-life applications. The design of the micro-channel features captures the enhanced heat transfer characteristics at the micro-scale; the modular assembly permits the integration into macro-scale processes. As a case study, the thermal performance and the economics were investigated to determine the feasibility of this compact heat exchanger for the hydrogen producing sulfur iodine thermo-chemical cycle. The results of this design effort with its associated performance goals and development status will be reported.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In