Full Content is available to subscribers

Subscribe/Learn More  >

Study on Heat Transfer and Flow Behavior of Mini-Tube Bank for Micro Heat Exchanger

[+] Author Affiliations
Y. Koizumi, T. Okuyama

Kogakuin University

H. Ohtake

Kogakuin Universuty

Paper No. IMECE2006-14626, pp. 693-699; 7 pages
  • ASME 2006 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Volume 1
  • Chicago, Illinois, USA, November 5 – 10, 2006
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-4784-5 | eISBN: 0-7918-3790-4
  • Copyright © 2006 by ASME


Heat transfer and flow behavior in the mini tube bank were examined. The tube bank was composed of 1 mm diameter nickel wires and a 30 mm wide × 15 mm high flow channel. Experiments were performed in the range of the rod Re = 5 ~ 430 by using water. Numerical analyses were also conducted with the commercial CFD code STAR-CD. The heat transfer coefficient after the second row was lower than first row's one. The flow visualization results indicated that the wake region was stagnant when the Reynolds number was low. This flow stagnation seemed to cause the heat transfer coefficient deterioration in the tube bank. As the Reynolds number was increased, the flow state in the wake region gradually changed from the stagnant condition to the more disturbed condition. The deeper the row was, the more disturbed the wake was. The heat transfer coefficient began to recover to the first row value at certain Reynolds number. The recovery started from the most downstream row; fifth row in the present experiments and was propagated to the upstream row. The Reynolds number when the recovery was initiated decreased as the spacing between rods was increased. The analytical results of the STAR-CD code supported the experimental results. When the wake was stagnant, the heat transfer coefficient distribution around the rear rod, i.e. the rod in the wake, showed a large dip in the front region of the rod. It was considered that this dip caused the heat transfer coefficient decrease after the second row observed in the experiments.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In