0

Full Content is available to subscribers

Subscribe/Learn More  >

Analysis of Heat Conduction in Silicon Using Molecular Dynamics Simulations

[+] Author Affiliations
Asegun S. Henry, Gang Chen

Massachusetts Institute of Technology

Paper No. IMECE2006-16252, pp. 593-598; 6 pages
doi:10.1115/IMECE2006-16252
From:
  • ASME 2006 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Volume 1
  • Chicago, Illinois, USA, November 5 – 10, 2006
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-4784-5 | eISBN: 0-7918-3790-4
  • Copyright © 2006 by ASME

abstract

Silicon's material properties, have been studied extensively because of its technological significance in a variety of industries, including microelectronics. Yet, questions surrounding the phonon relaxation times in silicon continue to linger.1,2 Previous theoretical works3-5 have generated qualitative expressions for phonon relaxation times, however these approaches require fitting parameters that cannot be determined reliably. This paper first discusses implementation issues associated with using the Green-Kubo method in molecular dynamics (MD) simulations. We compare various techniques used in similar works and discusses several implementation issues that have arisen in the literature. We then describe an alternative procedure for analyzing the normal modes of a crystal to extract phonon relaxation times. As an example material we study bulk crystalline silicon using equilibrium MD simulations and lattice dynamics. The environment dependent interatomic potential6 is used to model the interactions and frequency dependent phonon properties are extracted from the MD simulations.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In