Full Content is available to subscribers

Subscribe/Learn More  >

Ultrafast Diagnostics of Coherent Phonon Excitation and Energy Transfer

[+] Author Affiliations
Alexander Q. Wu, Xianfan Xu

Purdue University

Paper No. IMECE2006-13773, pp. 377-379; 3 pages
  • ASME 2006 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Volume 1
  • Chicago, Illinois, USA, November 5 – 10, 2006
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-4784-5 | eISBN: 0-7918-3790-4
  • Copyright © 2006 by ASME


Time resolved reflectivity of bismuth thin film evaporated on a silicon substrate is measured by an 80 femtosecond (fs) laser at a center wavelength of 800 nm. The reflectivity data reveal that coherent optical phonons (A1g ) near 2.9 THz (1 THz = 1012 Hz) are excited by the 80 fs laser pulses. Analyses of the reflectivity data reveal key parameters related to electron and phonon dynamics, including phonon excitation and de-phasing and electron-phonon energy coupling. It is also found that the phonon frequency peaks are red-shifted and broadened at higher laser fluences.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In