Full Content is available to subscribers

Subscribe/Learn More  >

Superlattice Analysis for Tailored Thermal Transport Characteristics

[+] Author Affiliations
E. S. Landry, A. J. H. McGaughey

Carnegie Mellon University

M. I. Hussein

University of Cambridge

Paper No. IMECE2006-13673, pp. 353-362; 10 pages
  • ASME 2006 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Volume 1
  • Chicago, Illinois, USA, November 5 – 10, 2006
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-4784-5 | eISBN: 0-7918-3790-4
  • Copyright © 2006 by ASME


Molecular dynamics simulations and the Green-Kubo method are used to predict the thermal conductivity of binary Lennard-Jones superlattices and alloys. The superlattice thermal conductivity trends are in agreement with those obtained through the direct method, verifying that the Green-Kubo method can be used to examine thermal transport in heterostructures. The simulation temperature and the constituent species are fixed while the superlattice period structure is varied with the goals of (i) minimizing the cross-plane thermal conductivity and (ii) maximizing the ratio of in-plane to cross-plane thermal conductivities. The superlattice thermal conductivity in both the cross-plane and in-plane directions is found to be greater than the corresponding alloy value and less than the value predicted from continuum theory. The anisotropy of the thermal conductivity tensor is found to be at a maximum for a superlattice with a uniform layer thickness. Lattice dynamics calculations are used to investigate the role of optical phonons in the thermal transport.

Copyright © 2006 by ASME
Topics: Superlattices



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In