0

Full Content is available to subscribers

Subscribe/Learn More  >

Alternative Solutions for Longitudinal Fins of Rectangular, Trapezoidal, and Concave Parabolic Profiles

[+] Author Affiliations
A. Aziz

Gonzaga University

Paper No. IMECE2006-13557, pp. 311-316; 6 pages
doi:10.1115/IMECE2006-13557
From:
  • ASME 2006 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Volume 1
  • Chicago, Illinois, USA, November 5 – 10, 2006
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-4784-5 | eISBN: 0-7918-3790-4
  • Copyright © 2006 by ASME

abstract

The traditional thermal analysis of fins is based on the assumption of specified thermal boundary conditions at the base and tip of the fin. For situations when the fin base is in contact with a fluid experiencing condensation and the fin is required to remove the energy released by the fluid, the base is subjected to two boundary conditions: a fixed temperature and a fixed heat flux. This paper develops solutions for the temperature distribution in the fins under these conditions. Solutions are provided for rectangular, trapezoidal, and concave parabolic (finite tip thickness). Results illustrating the relationship between the dimensionless heat flux, the fin parameter, and dimensionless tip temperature are provided for all three geometries. The case of convective fin tip is also considered and lead to a relationship between the dimensionless heat flux, the fin parameter, and the Biot number at the tip. The results presented here provide tools that not only complement the traditional analyses but are believed to have more direct relevance for fin designers.

Copyright © 2006 by ASME
Topics: Fins

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In