0

Full Content is available to subscribers

Subscribe/Learn More  >

Dependence of Thermal Boundary Conductance on Interfacial Mixing at the Chromium-Silicon Interface

[+] Author Affiliations
Patrick E. Hopkins, Richard N. Salaway, Pamela M. Norris

University of Virginia

Robert J. Stevens

Rochester Institute of Technology

Paper No. IMECE2006-15288, pp. 215-224; 10 pages
doi:10.1115/IMECE2006-15288
From:
  • ASME 2006 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Volume 1
  • Chicago, Illinois, USA, November 5 – 10, 2006
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-4784-5 | eISBN: 0-7918-3790-4
  • Copyright © 2006 by ASME

abstract

The thermal conductance at solid-solid interfaces is becoming increasingly important in thermal considerations dealing with devices on nanometer length scales. Specifically, interdiffusion or mixing around the interface, which is generally ignored, must be taken into account when the characteristic lengths of the devices are on the order of the thickness of this mixing region. To study the effect of this interfacial mixing on thermal conductance, a series of Cr films are grown on Si substrates subject to various deposition conditions to control the growth around the Cr/Si boundary. The Cr/Si interfaces are characterized with auger electron spectroscopy depth profiling. The thermal boundary conductance (hBD ) is measured with the transient thermoreflectance technique. Values of hBD are found to vary with both the thickness of the mixing region and the rate of compositional change in the mixing region. The effects of the varying mixing regions in each sample on hBD are discussed and the results are compared to the diffuse mismatch model.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In